
STRATEGIE LONG-ACTING NEL TRATTAMENTO DELL'INFEZIONE DA HIV: PRO E CONTRO

Gianni Di Perri

Clinica di Malattie Infettive Università degli Studi di Torino Ospedale Amedeo di Savoia

Ospedale Amedeo di Savoia

Financial Disclosures

- Abbvie
- BMS
- GS
- MSD
- Janssen
- ViiV
- Pfizer
- Novartis
- Astellas
- Basilea

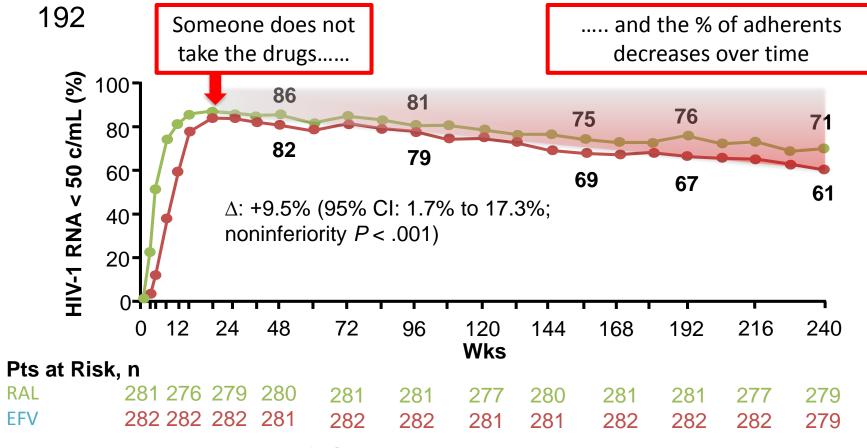
 Principles and Hypotheses supporting the development of Long-Acting Antiretrovirals (LA-ARVs)

What is available in terms of pharmacological and clinical information

 Potential advantages/opportunities and disadvantages/risks Principles and Hypotheses supporting the development of Long-Acting Antiretrovirals (LA-ARVs)

What is available in terms of pharmacological and clinical information

 Potential advantages/opportunities and disadvantages/risks


On the Therapeutic side - PROs

(imaging LA parenteral formulation of an entire regimen)

- Adherence to conventional therapy is suboptimal in a sizeable proportion of pts, even with the most tolerable and easy to take regimen (e.g. STR)
- Selective non-adherence is consistently reported in clinical trials and common practice
- Patients are aging and concurrent medications are often required
- Prior experience with PEG-IFN vs conventional IFN formulations consistently showed increased rates of therapeutic success, with higher and sustained [IFN] over time
- Community VL likely to be reduced by higher prevalence of 100% adherent patients

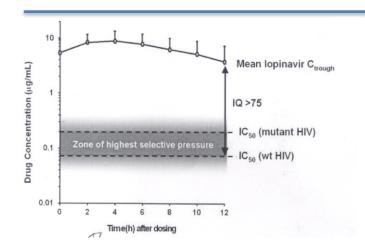
STARTMRK: RAL vs EFV in Treatment-Naive Patients: 5-Yr Final Report

 RAL noninferior to EFV in HIV-1 RNA < 50 c/mL at Wk 48 (primary endpoint; ITT, NC = F analysis); superior from Wk

Rockstroh J, et al. J Acquir Immune Defic Syndr. 2013;63:77-85.

Occurrence of Selective Ritonavir Nonadherence and Dose-Staggering in Recipients of Boosted HIV-1 Protease Inhibitor Therapy

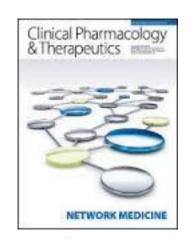
Jonathan Shuter,^{1,2} Julie A. Sarlo,¹ Richard A. Rode,³ and Barry S. Zingman^{1,2,4}


¹AIDS Center and Division of Infectious Diseases, Montefiore Medical Center, Bronx, New York, USA; ²Albert Einstein College of Medicine, Bronx, New York, USA; ³Abbott Laboratories, Abbott Park, Illinois, USA; ⁴Einstein/Montefiore Center for AIDS Research, Bronx, New York, USA

HIV Clin Trials 2009;10(3):135-142

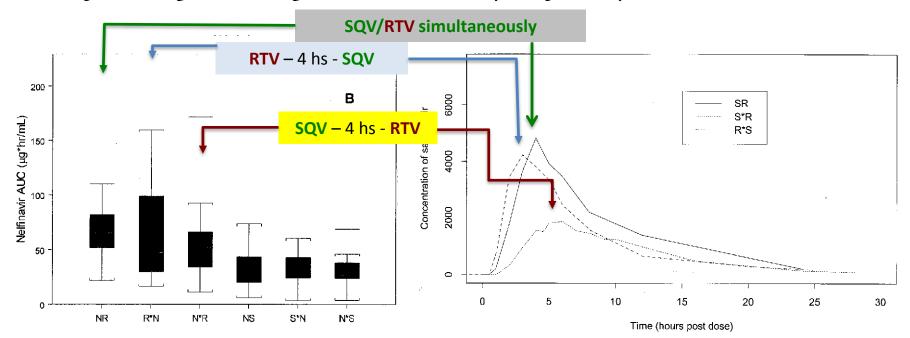
Results: The final study population consisted of 36

subjects. Three subjects (8.3%) were selectively nonadherent to ritonavir, 17 (47.2%) staggered any doses of ritonavir, and 3 (8.3%) staggered more than 5% of their ritonavir doses. Two of these three were also selectively nonadherent to ritonavir. There was no evident impact of these behaviors on HIV viral load (VL); all subjects who were selectively nonadherent to or frequently staggered doses of ritonavir had VL <75 copies/mL at 24 weeks. **Conclusions:** Selective ritonavir nonadherence and dose-staggering occurs in a small but significant minority of boosted PI recipients.

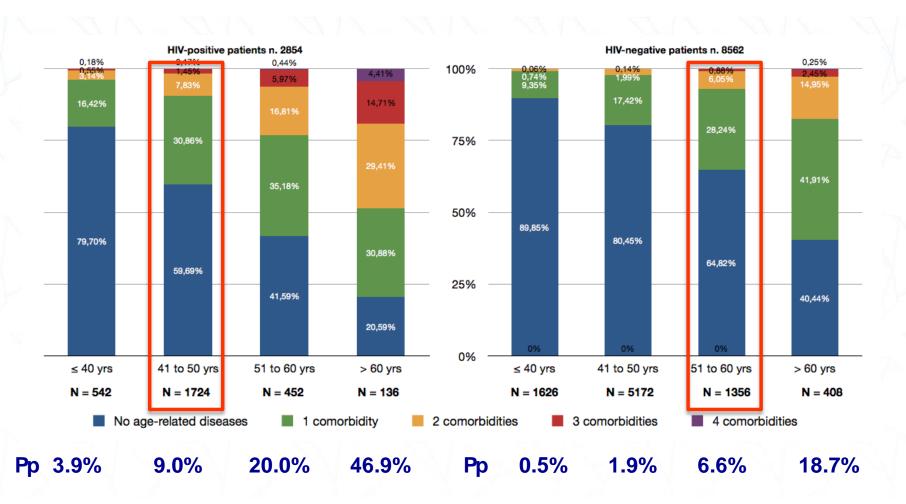

Darunavir without ritonavir is 37% bioavailable

Primary resistance to darunavir leads to significant in class resistance

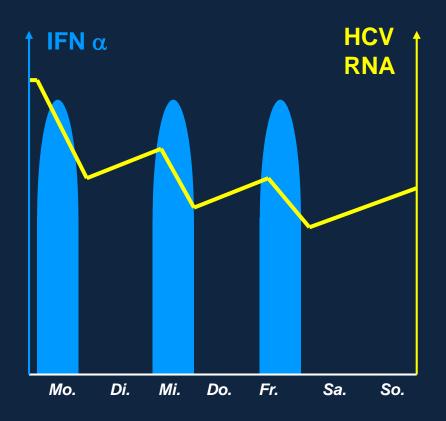
Darunavir package insert

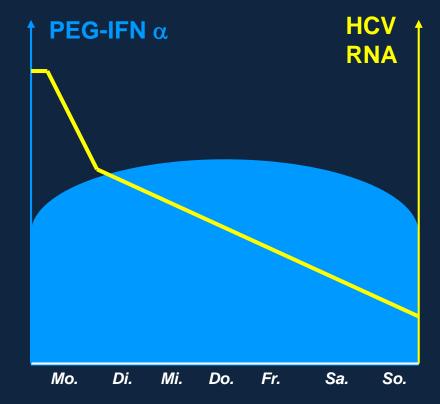

Effect of simultaneous versus staggered dosing on pharmacokinetic interactions of protease inhibitors (Clin Pharmacol Ther 2003;73:406-16.)

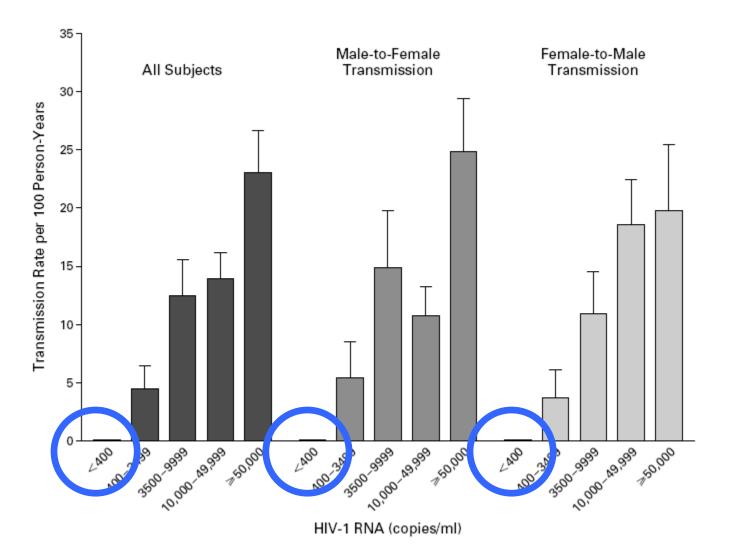
Carla B. Washington, PhD, Charles Flexner, MD, Lewis B. Sheiner, MD, Susan L. Rosenkranz, PhD, Yoninah Segal, MS, Judith A. Aberg, MD, Terrence F. Blaschke, MD, and the AIDS Clinical Trials Group Protocol 378 (ACTG 378) Study Team, Stanford and San Francisco, Calif, Baltimore, Md, and Boston, Mass



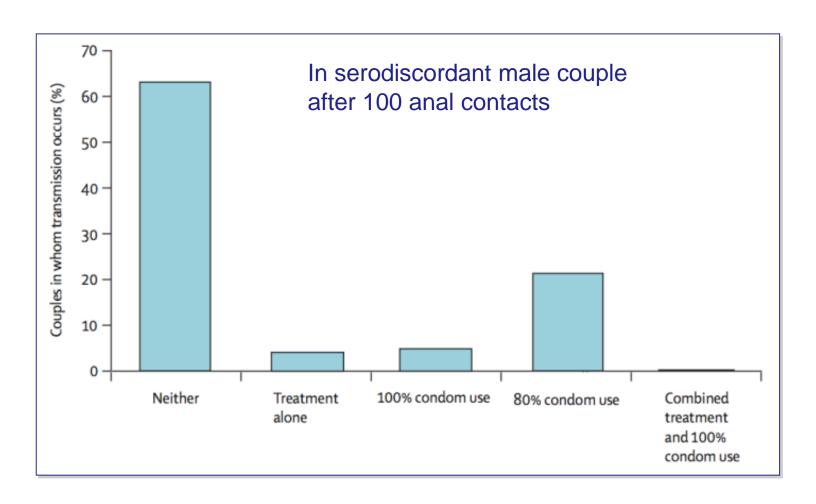
Objective: The aim of this study was to determine whether pharmacokinetic interactions between the protease inhibitors saquinavir soft gel, nelfinavir, and ritonavir are affected by the timing of administration.


Study design: We used an open-label, 6-period, incomplete Latin square crossover study in 18 human immunodeficiency virus—negative subjects. Each received single oral doses of 2 of the 3 protease inhibitors during each of 6 periods. Single doses were given either simultaneously or separated by 4 hours.




Poly-patology prevalence in cases and controls, stratified by age categories

Comparison of Pharmacokinetic Profiles: PEG-IFN alfa vs. IFN alfa



19 confirmed Swiss statement challe

(based on math. Model by Wilson et al.)

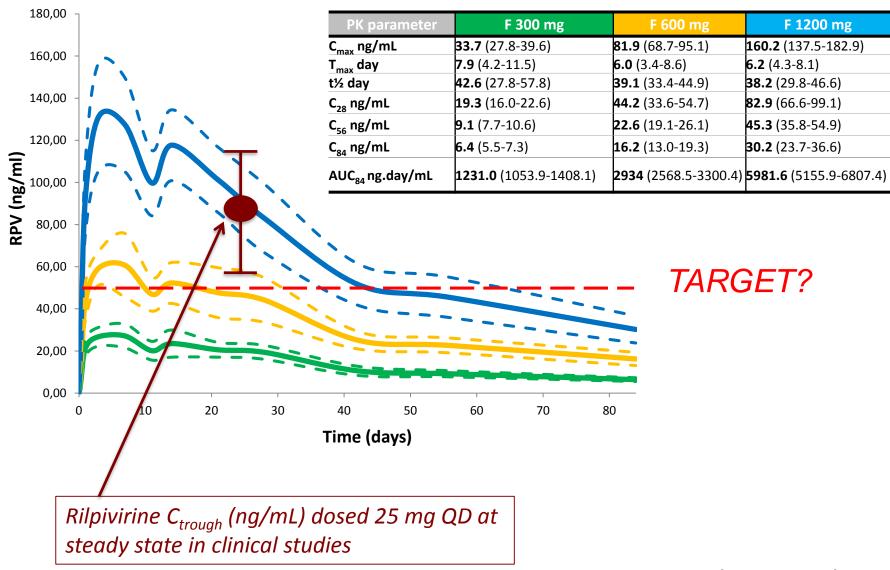
 Principles and Hypotheses supporting the development of Long-Acting Antiretrovirals (LA-ARVs)

 What is available in terms of pharmacological and clinical information

 Potential advantages/opportunities and disadvantages/risks

SSAT040

A pharmacokinetic evaluation of the exposure and distribution of TMC278LA for use as pre-exposure prophylaxis, in plasma and genital tract / rectal compartments, following a single intramuscular dose at different doses in HIV negative healthy volunteers. Jackson


AGA, et al. In press

- HIV negative volunteers (60 female, 6 male)
- Aged 18 50 years
- Low behavioural risk for infection
- Female: > 50% of enrolled; self-identified African or African-Caribbean ancestry
- Administered 300 (n = 20), 600 (n = 20), 1200 (n = 20) mg RPV-LA (G001 formulation) intramuscularly (gluteus maximus)
- Sampling:
 - plasma PK
 - cervicovaginal fluid (CVF; females) & rectal fluid (RF; males) PK
 - tissue biopsies: vaginal (VT; females) & rectal (RT; males) PK
 - cervicovaginal lavage (CVL; females) PK & PD

Day	0	0 (4 h)	0 (8h)	1	3	7	11	14	21	28	42	56	84
Plasma PK													
Genital/rectal fluid PK													
Tissue Biopsy (vaginal/rectal)PK													
CVL for PK and PD													

PLASMA 300, 600 & 1200 mg doses:

Dose proportionality: geometric mean (90% CI)

- -A subject tested positive for HIV antibodies on study day 84
- -HIV viral load on study day 56 = 370 copies,/mL
- -HIV viral load on study day 84 = 175060 copies,/mL
- -Received the lowest studied dose of 300 mg IM

```
-Plasma [RPV] = 24.3 ng/mL on day 28

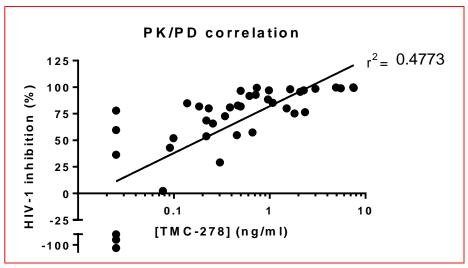
10.5 ng/mL on day 42 (presumed exposure to HIV)

6.8 ng/mL on day 56

7.5 ng/mL on day 84
```

```
-CVF [RPV] = 32.9 ng/mL on day 28

18.3 ng/mL on day 42 (presumed exposure to HIV)

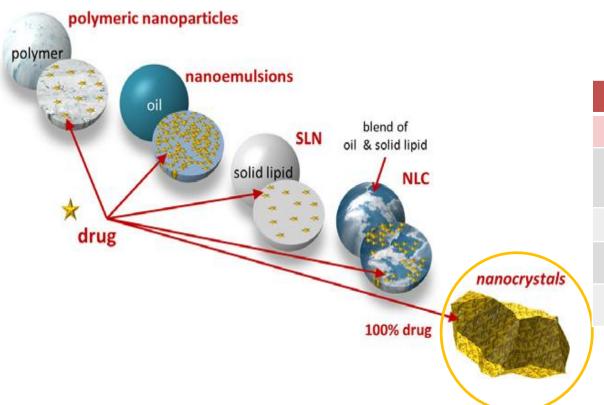

11.2 ng/mL on day 56

14.0 ng/mL on day 84
```

May suggest that higher exposures of RPV are needed to protect against HIV infection

SSAT040: PD data

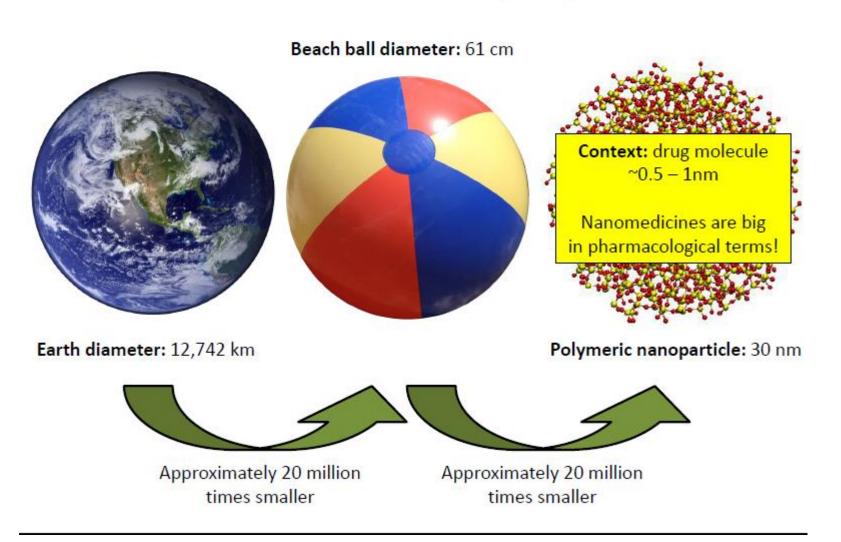
- CVL samples collected by aspiration of 10 mL normal saline (after cervical lavage) at baseline, 28 and 56 days post-dose
- N = 10 on 300mg and N = 10 on 1200mg
- Antiviral activity determined against HIV-1BaL challenge of TZM-bl cells
- PK/PD correlation established using all data points from both doses



Thanks to Betsy Harold and Pedro Mesquita, Albert Einstein College of Medicine.

Cabotegravir nanocrystals

- Drug nanocrystals are particles made from 100% drug; typically, they are stabilized by surfactants or polymeric steric stabilizers.
- The high loading makes them very efficient in transporting drug to or **into cells**, reaching a sufficiently high therapeutic concentration for the pharmacological effect.
- Higher drug loading versus matrix approaches for lower injection volume

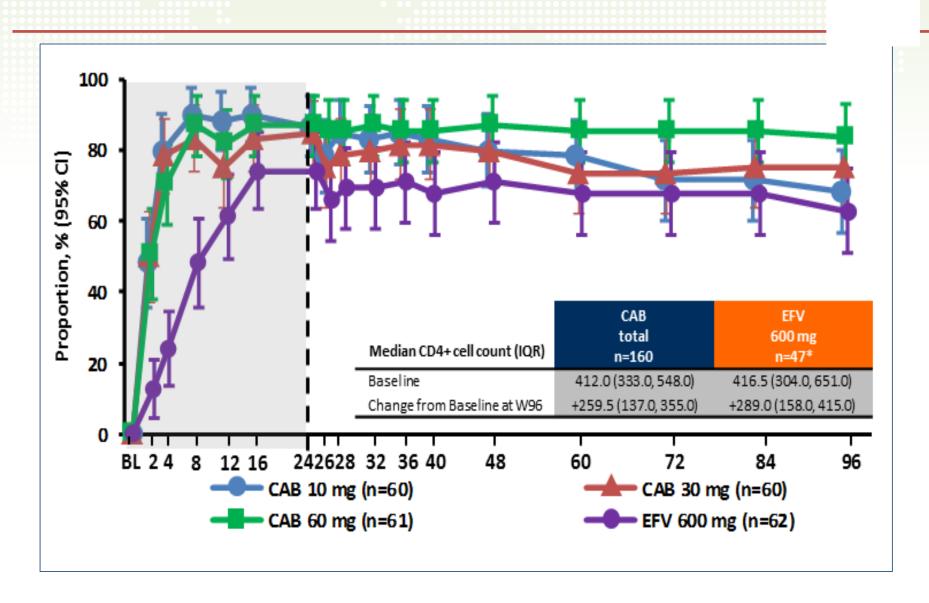

CAB LA 200 mg/mL					
Component	Function				
Cabotegravir free acid (d50 ~200 nm)	Active drug				
Mannitol	Tonicity agent				
Surfactant system	Wetting agent/stabiliser				
Water for injection	Solvent				

Müller RH et al. Eur J Pharm Biogeharm 220101;7/8;11-2016

Drug formulation - size in context

Nanomedicine - size in perspective

Background


- CAB is an HIV-1 integrase inhibitor
 - Oral 30 mg tablet (t_{y} , ~40 hours)
 - LA nanosuspension 200 mg/mL ($t_{1/2}$, ~20-40 days)
- RPV is an HIV-1 NNRTI
 - Oral 25 mg tablet (t_{y} , ~50 hours)
 - LA nanosuspension 300 mg/mL ($t_{1/2}$, ~30-90 days)
- Oral 2-drug CAB + RPV proof of efficacy through Week 96 in LATTE-1

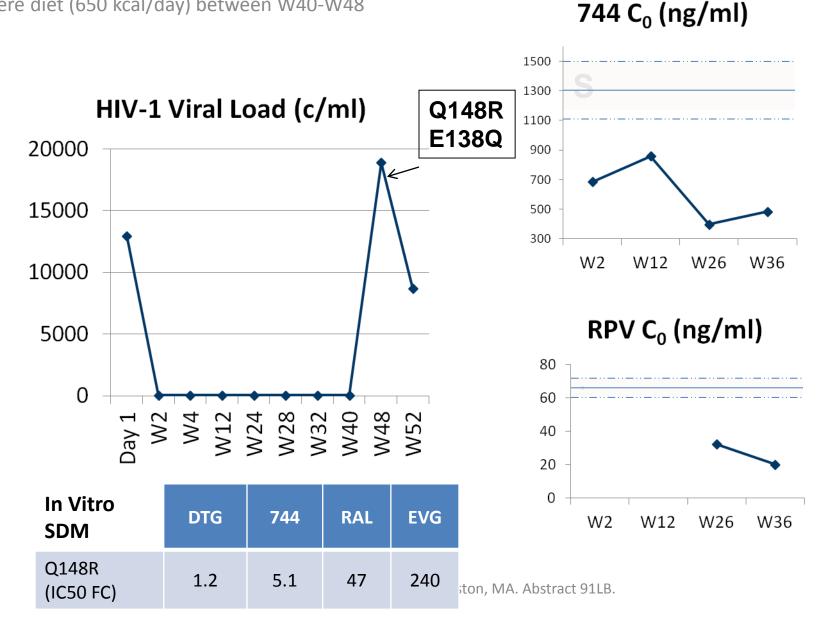
Cabotegravir LA and RPV LA

Attribute	CAB LA	RPV LA		
Drug concentration	200 mg/mL	300 mg/mL		
Refrigeration/stability	No; store up to 30°C 24 months	Yes; store at 2–8°C 36 months (>8–25°C for ≤24 hours)		
Protect from light	No	Yes		
Dose – monthly	400 mg (2 mL)	600 mg (2 mL)		
Dose – bimonthly	600 mg (3 mL)	900 mg (3 mL)		
Dosage instructions/needle gauge	HCP administration Gluteal IM 23 G	HCP administration Gluteal IM 23 G		
t _{1/2} with single dose (range or SD)	~40 days (25–54 days)	44–61 days (±24 days)		
Drug interactions	Low liability as perpetrator or victim	Low liability as perpetrator; victim of CYP3A4 induction/inhibition		

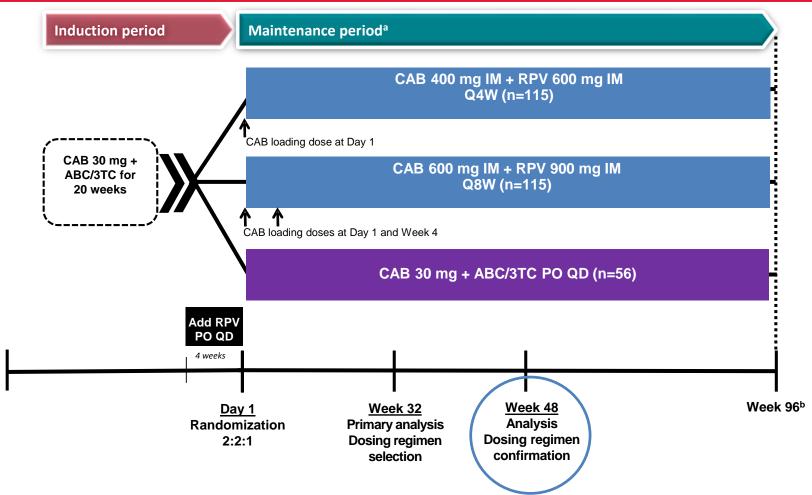
LATTE Virologic Success: HIV-1 RNA <50 c/mL by FDA Snapshot (ITT-E)

Protocol-Defined Virologic Failure (96 weeks)

	744 total	EFV
	n=181	n=62
Subjects with PDVF during Induction *1 subject per 744 dose	3* (2%)	3 (5%)

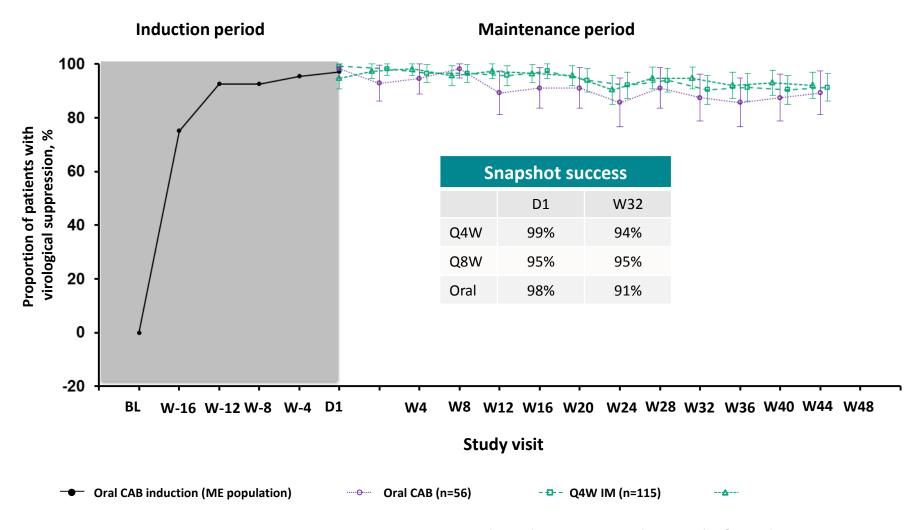

^{*1} subject per 744 dose
No NRTI, NNRTI or INI treatment-emergent mutations

	744 total	EFV
	n=160	n=47
Subjects with PDVF during Maintenance	2** (1%)	1 (2%)
IN genotypic results at BL and time of PDVF	1	1
INI-r mutations	1	0
PR/RT genotypic results at BL and time of	2	1
PDVF		
NRTI-r mutations	0	0
NNRTI-r mutations	1	0

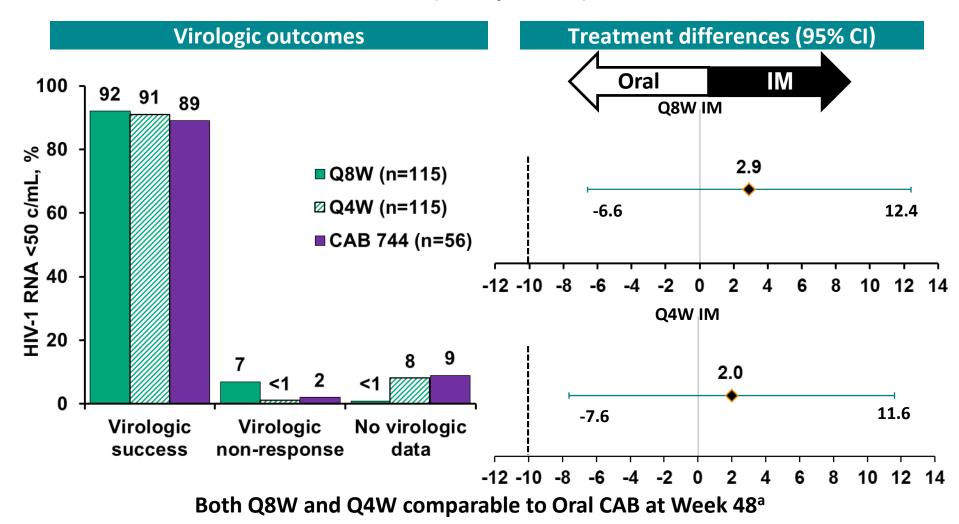

^{**744 10} mg – treatment emergent INI (Q148R) and NNRTI (E138Q) at W48; 744 FC = 3; RPV FC = 2 >744 and RPV concentrations <50% of expected; extreme calorie restricted diet W40-W48 **744 30 mg – PDVF at W36; no treatment-emergent mutations

PDVF: <1.0 \log_{10} c/mL decrease in plasma HIV-1 RNA by Week 4 **OR** confirmed HIV-1 RNA \geq 200 c/mL at or after Week 16 or after prior suppression to <200 c/mL

744 10 mg + RPV 25 mg Low 744 and RPV plasma drug concentrations Severe diet (650 kcal/day) between W40-W48



LATTE-2 Study Design



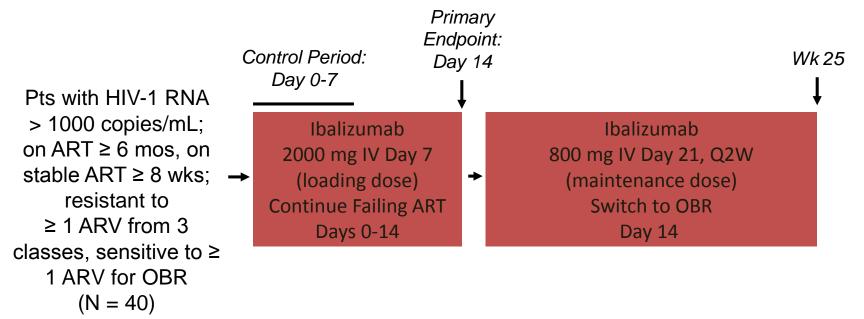
ABC/3TC, abacavir/lamivudine; ALT, alanine aminotransferase; IM, intramuscular; PO, orally; QD, once daily; Q4W, every 4 weeks; Q8W, every 8 weeks; ULN, upper limit of normal. aSubjects who withdrew after at least 1 IM dose entered the long-term follow-up period. Subjects can elect to enter Q4W and Q8W LA Extension Phase beyond Week 96.

LATTE-2 Week 48 Results: HIV-1 RNA <50 c/mL by Snapshot (ITT-ME)

HIV-1 RNA <50 c/mL at Week 48 ITT-ME (Snapshot)

• aMet prespecified threshold for concluding IM regimen is comparable to oral regimen (Bayesian Posterior Probability >90% that true IM response rate is no worse than -10% compared to the oral regimen). Observed Bayesian Probabilities: Q8W vs Oral = 99.7%; Q4W vs Oral = 99.4%.

Protocol-Defined Virologic Failure (PDVF): Genotype


Maintenance period ^a	Q8W IM (n=115)	Q4W IM (n=115)	Oral CAB (n=56)
Subjects with PDVF	2 (1%) ^b	0	1 (2%)
INI-r mutations	1 ^c	0	0
NRTI-r mutations	0	0	0
NNRTI-r mutations	1 ^c	0	0

- NNRTI—K103N, E138G, and K238T (FC RPV=3.3; Etravirine=1.9); INI—Q148R (FC CAB=5.1; Dolutegravir=1.38)^c
- No additional PDVFs beyond W48 on any arm (all subjects through W72)^d

PDVF: <1.0 log₁₀ c/mL decrease in plasma HIV-1 RNA by Week 4, OR confirmed HIV-1 RNA ≥200 c/mL after prior suppression to <200 c/mL, OR >0.5 log₁₀ c/mL increase from nadir HIV-1 RNA value ≥200 c/mL. ^aOne additional PDVF without treatment-emergent resistance occurred during oral Induction Period due to oral medication non-adherence. ^bOne PDVF at Week 4: **no detectable RPV at Week 4 and Week 8**, suggesting maladministration. ^cOne PDVF at Week 48 at HIV-1 RNA 463 c/mL (confirmed at 205 c/mL). ^dContains data beyond W48.

TMB-301: Long-Acting Ibalizumab in Pretreated Pts Infected With Multidrug-Resistant HIV

- Ibalizumab: humanized mAb to conformational epitope on CD4 receptor that blocks postattachment HIV entry into CD4+ T-cells without altering normal cell function
- Single-arm, open-label phase III trial
 - Primary endpoint: ≥ 0.5 log₁₀ HIV-1 RNA decrease at Day 14
- 53% with resistance to all drugs from ≥ 3 classes; 68% with INSTI resistance

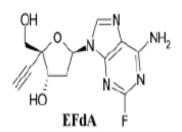
Efficacy, Safety of Ibalizumab Through 24 Wks

- Primary endpoint: 83% with ≥ 0.5 log₁₀ HIV-1 RNA decrease at Day 14 vs 3% at end of control period (*P* < .0001)
 - 60% with ≥ 1.0 log₁₀
 HIV-1 RNA decrease
 - Mean decrease by Day14: 1.1 log₁₀

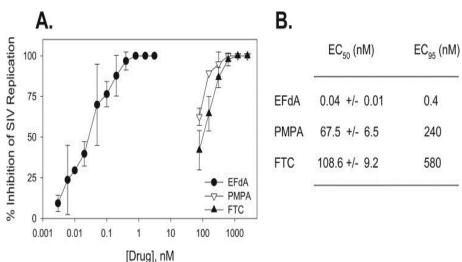
Wk 24 Virologic Outcome	Ibalizumab + OBR
≥ 1.0 log ₁₀ HIV-1 RNA decrease, %	55
≥ 2.0 log ₁₀ HIV-1 RNA decrease, %	48
HIV-1 RNA < 50 copies/mL, %	43
HIV-1 RNA < 200 copies/mL, %	50
Mean HIV-1 RNA decrease from baseline, log ₁₀	1.6

- 9 pts reported 17 serious AEs
 - 1 drug-related serious
 AE (IRIS) resulted in discontinuation
- 9 other pts discontinued
 - Death (n = 4; liver failure, Kaposi sarcoma; end-stage AIDS, lymphoma)
 - Consent withdrawal (n = 3)
 - Lost to follow-up (n = 2)
- No cases of antiibalizumab antibodies

CD01 Extension: Long-term, Maintenance PRO 140 Monotherapy Following Initial ART

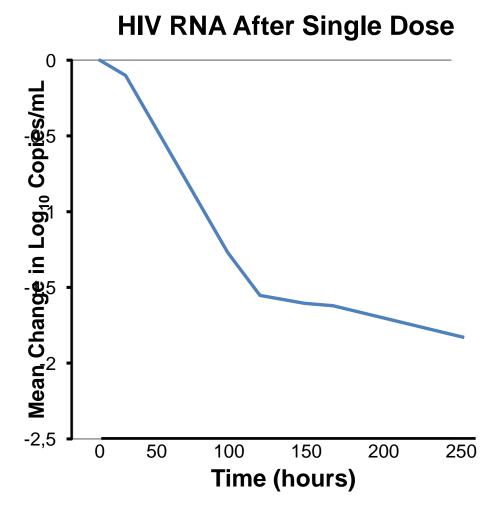

- PRO 140: humanized IgG4 CCR5 mAb
- Single-arm, open-label phase Ilb extension study^[1]
 - Maintenance PRO 140
 given at 350 mg SC/wk for ≤ 3 yrs in pts stable on initial
 ART from CD01 study (N = 16)
- Wkly PRO 140 maintenance SC injection generally well tolerated
 - No drug-related severe AEs or d/c for AEs
 - Infrequent, mild, transient administration-site reactions in < 10% of pts

- HIV-1 RNA < 40 copies/mL maintained in majority of pts
 - > 40 wks: 13/16 pts (81.3%)
 - > 2 yrs: 10/16 pts (62.5%)
 - 1 pt d/c due to relocation; 5 pts had VF
- CD4+ cell counts stable through study
- No anti-PRO 140 antibodies detected
- Ongoing phase IIb/III studies of PRO 140 monotherapy^[2] and in combination with ART^[3]

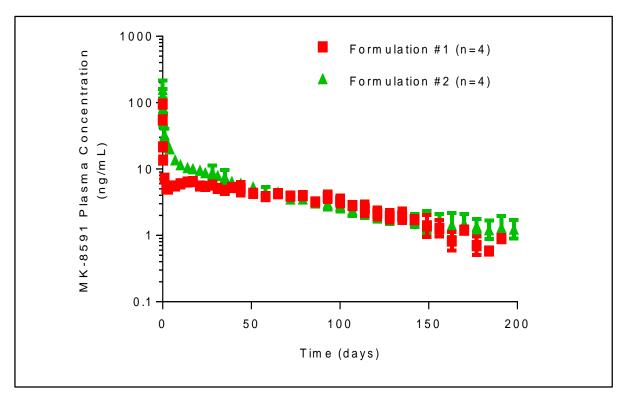

- 1. Lalezari J, et al. CROI 2017. Abstract 437.
 - 2. ClinicalTrials.gov. NCT02859961.
 - 3. ClinicalTrials.gov. NCT02483078.

4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) MK8591

- EFdA (MK-8591) is a nucleoside reverse transcriptase translocation inhibitor (NRTTI)
- Sub-nanomolar potency in vitro¹ and prolonged suppression of SIV in macaque model²



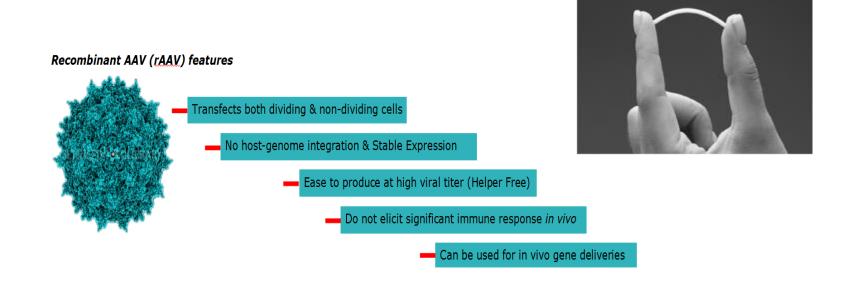
- Prolonged persistence of triphosphate form in PBMC and macrophage
- Potential for once weekly dosing
- Long-acting formulations under development


MK-8591: Reduction in HIV RNA for at Least 10 Days After Single Oral Dose

- Open-label study (n=6)
 - Treatment-naïve males
 - CD4 >500 cells/mm³
- MK-8591 (NRTI)
 - Single, 10-mg oral dose
- Intracellular MK-8591-TP in PBMC
 - T1/2 (geometric mean): 103 hours
- No evidence of resistance out to day 10
- HIV RNA reduction (log₁₀ copies/mL)
 - Day 7: 1.67
 - Day 10: 1.78
- Generally well tolerated

Friedman E, et al. 23rd CROI. Boston, 2016. Abstract 437LB.

MK-8591 (EFdA) Implant Formulations Release Effective Drug Levels for >180 days



- >180-day extended release from solid state formulations after a single injection in rats.
- Data suggest the potential to provide coverage for durations up to 1 year.

Antiretroviral Therapy: The Next Generation?

Implantable (and removable) combination antiretrovirals

 Vectored delivery of combinations of antibody-based therapy or protein based therapy

LA ARV Implants – Tenofovir Alafenamide

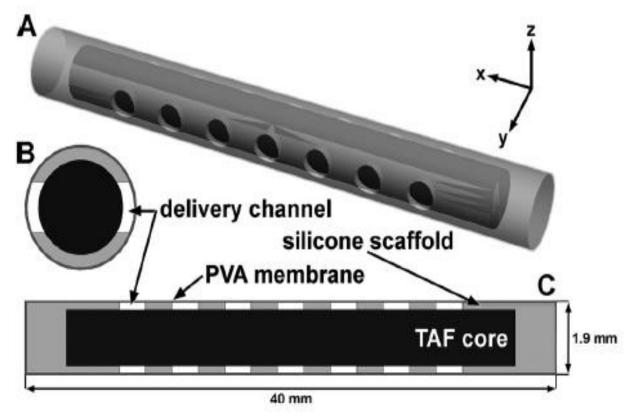


FIG 1 Three-dimensional model (A) and cross-sectional drawings (B and C) of TAF implant. The TAF core (black) inside the silicone scaffold with PVA membrane coating is shown (not to scale). Cross sections were sliced through the y-z (B) and x-y planes (C).

M Gunawardana et al., Antimicrob Agents Chemother 2015; 59: 3913

LA ARV Implants – Tenofovir Alafenamide

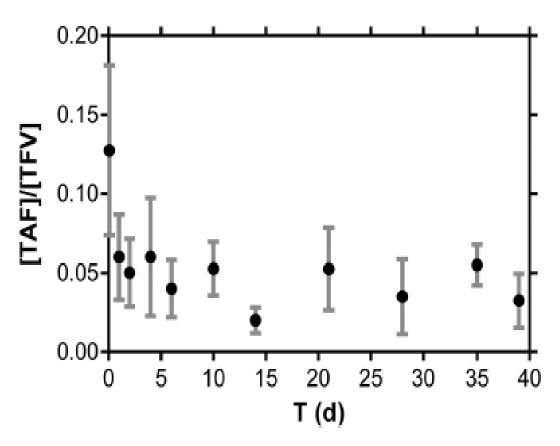


FIG 4 Molar TAF:TFV plasma concentration ratios are stable throughout the 40-day study. Each data point represents the means ± standard deviations from four beagle dogs.

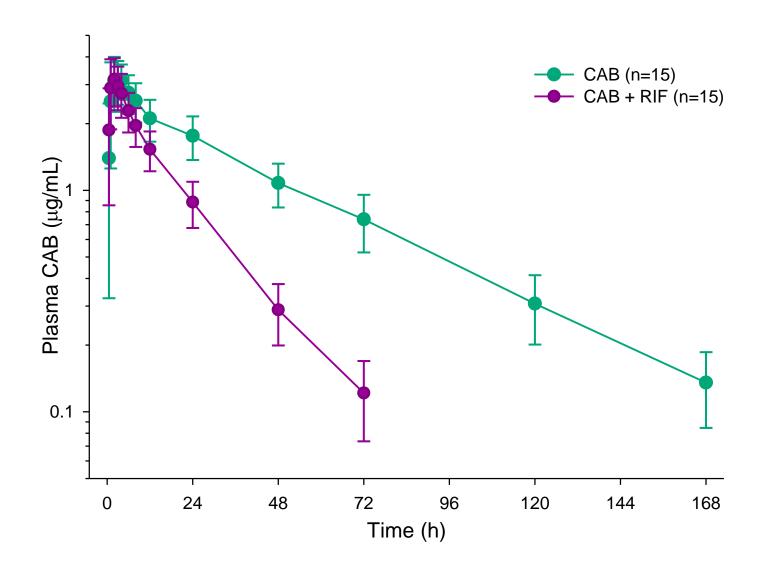
 Principles and Hypotheses supporting the development of Long-Acting Antiretrovirals (LA-ARVs)

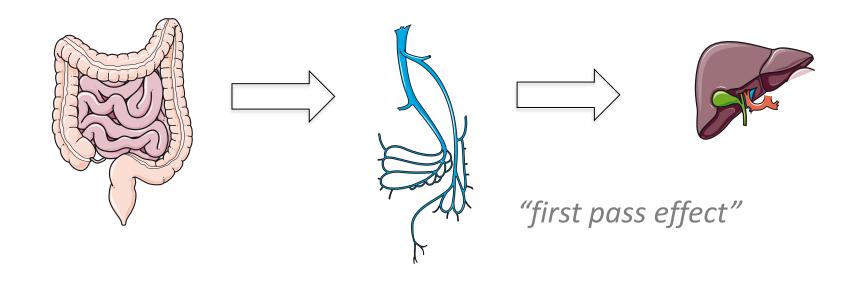
What is available in terms of pharmacological and clinical information

 Potential advantages/opportunities and disadvantages/risks

PROs

(imaging LA parenteral formulation of an entire regimen)


- Supervised administration might increase adherence (treatment)
- Parenteral administration circumvents 1st pass liver metabolism, thus
 possibly reducing the effect of P450 cytochrome isoenzymes, the need of
 boosting agents and drug-drug interactions
- Long-lasting delivery fits with the time-dependent PD of ARVs
- Long-lasting delivery might reduce peak concentrations (less AEs)
- Costs likely to be reduced both in terms of pharmaceutical expenditure and general management of antiretroviral therapy
- Proof of concept trial based on induction-maintenance strategy (LATTE) gave rise to promising results

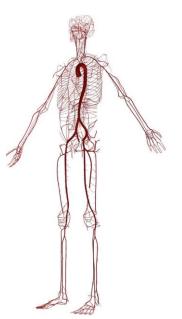

Cabotegravir DDI summary

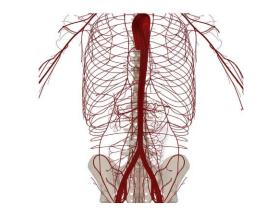
- Primarily metabolised via UGT1A1 with minor UGT1A9 component
- Favourable drug interaction profile
- As a victim of DDIs, no clinically significant interactions of cabotegravir with:
 - Etravirine, rilpivirine
- Administration with polyvalent cations requires separation
 - Cabotegravir should be taken 2 hours before or 4 hours after polyvalentcation-containing products (e.g. multivitamins, antacids)

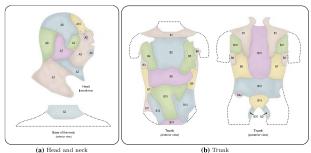
- As perpetrator of DDIs:
 - Cabotegravir causes no clinically significant effects on:
 - Midazolam (CYP3A probe)
 - Rilpivirine
 - Oral contraceptives (levonorgesterol/ethinyl oestradiol)
 - In vitro, no inhibitory effects on multiple CYPs or UGTs
 - Inhibitor of organic anion transporter (OAT1 and OAT3)
 - Avoid with methotrexate

Rifampin Decreases Cabotegravir Exposure

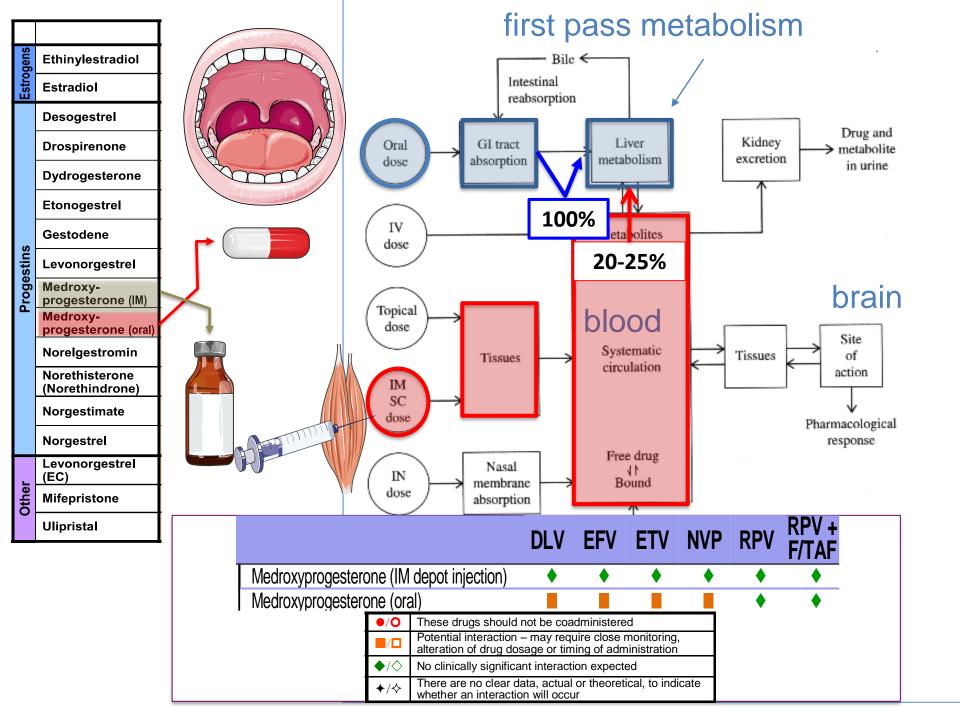
Drugs absorbed from the gastrointestinal tract are exposed to the metabolizing enzymes and bile excretory transport systems of the liver before reaching the systemic circulation

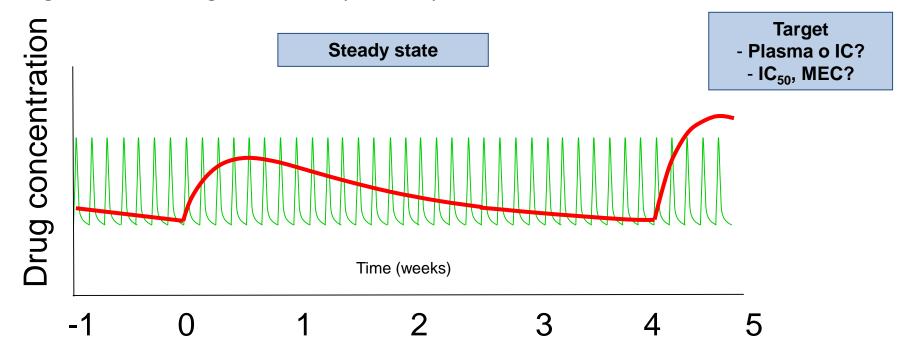

Blood flow distribution in an anatomically detailed arterial network model: criteria and algorithms


Pablo J. Blanco · Sansuke M. Watanabe · Enzo A. Dari Marco Aurélio R. F. Passos · Raúl A. Feijóo Biomech Model Mechanobiol (2014) 13:1303–1330


Table 5 Description of specific organs and their blood supply

Code	Organ	BFF (%)	DT
O1	Heart	4	PD
O2	Encephalon	12	PD
O3/O4	Eye $(\times 2)$	0.014286	PD
O5/O6	$Ear(\times 2)$	0.000014	PD
O7	Nose	0.000089	MD
O8	Tongue	0.3	MD
O9	Teeth	0.0012	VD
O10	Thyroid	1.5	PD
O11	Hypophysis	0.009429	MD
O12	Liver	6.5	PD
O13	Gallbladder	0.004286	MD
O14/O15	Kidney $(\times 2)$	9.5	PD
O16/17	Suprarenal $(\times 2)$	0.15	PD
O18	Stomach	1	PD
O19	Pancreas	1	PD
O20	Spleen	3	PD
O21	Small intestine	10	PD
O22	Large intestine	3.25	PD
O23	Bladder	0.06	PD
O24	Penis	0.893140	VD
O25/O26	Testicle $(\times 2)$	0.028750	MD
O27	Rectum	0.75	PD
O28	Diaphragm	1.058718	LD
	Total	64.712962	





Simulation of drug concentration profiles following multiple dosing of immediate release vs. extended release: higher versus lower dose?

- Are high C_{max} values only potentially toxic in case of drugs with a Time-dependent pharmacodynamics?
- Should this be the case, LA formulations of ARVs are going to fit optimally from a clinical-pharmacological standpoint
- In case of β -lactam antibiotics, however, peak levels proportionally correlate with the chance of avoiding the outgrowth of resistant mutants, while, at the same time, these drugs work according to a time-dependent pattern

CONs

(imaging LA parenteral formulation of an entire regimen)

- Supervised administration might decrease adherence (prevention), + fear of IM injections
- Also depending on the performance of the LA formulation, the choice of ARVs for LA-ARV might be problematic as fluctuations of drug [c] should remain into the therapeutic interval with low inter-patient variability, with some risks with several drugs
- Periodicity of drug administration should be carefully defined with a sort of "standard deviation" (e.g. + or – 7 days for the new administration as referred to the scheduled day)
- The co-formulation of LA GSK1265744 and RPV seems rather unbalanced in terms of T > MEC
- Injection site inflammation

TORINO:

Stefano Bonora Antonio D'Avolio

Alessandra Arialdo

Micol Ferrara

Mauro Sciandra Alice Trentalange

Marco Siccardi Nicole Pagani

Lorena Baietto Lucio Boglione

Cristina Tettoni Sarah Allegra

Sabrina Audagnotto Marino Bonasso

Letizia Marinaro Alessandro Turchi

Jessica Cusato Debora Pensi

Margherita Bracchi Pino Cariti

Laura Trentini Paolo Bigliano

Andrea Calcagno Ilaria Motta

Marco Simiele Silvia Corcione

Amedeo De Nicolò Ambra Barco

Anna Lucchini Maria Laura Stella

Filippo Lipani Giancarlo Orofino

Roberto Bertucci Valeria Ghisetti

Agostino Maiello

Bernardino Salassa

Francesco G. De Rosa

Chiara Montrucchio

Chiara Alcantarini

Chiara Cardellino

Acknowledgments

THE UNIVERSITY of LIVERPOOL

LIVERPOOL:

David Back

Saye Khoo

Andy Owen

Marco Siccardi

Anna Maria Geretti

ROMA:

LONDON:

Marta Boffito Andrea Antinori

Margherita Bracchi Adriana Ammassari

Nicole Pagani Giuseppe Ippolito